Tweaks and Keys for Block Ciphers: The TWEAKEY Framework
نویسندگان
چکیده
We propose the TWEAKEY framework with goal to unify the design of tweakable block ciphers and of block ciphers resistant to related-key attacks. Our framework is simple, extends the key-alternating construction, and allows to build a primitive with arbitrary tweak and key sizes, given the public round permutation (for instance, the AES round). Increasing the sizes renders the security analysis very difficult and thus we identify a subclass of TWEAKEY, that we name STK, which solves the size issue by the use of finite field multiplications on low hamming weight constants. We give very efficient instances of STK, in particular, a 128-bit tweak/key/state block cipher Deoxys-BC that is the first AES-based ad-hoc tweakable block cipher. At the same time, Deoxys-BC could be seen as a secure alternative to AES-256, which is known to be insecure in the related-key model. As another member of the TWEAKEY framework, we describe Kiasu-BC, which is a very simple and even more efficient tweakable variation of AES-128 when the tweak size is limited to 64 bits. In addition to being efficient, our proposals, compared to the previous schemes that use AES as a black box, offer security beyond the birthday bound. Deoxys-BC and Kiasu-BC represent interesting pluggable primitives for authenticated encryption schemes, for instance, ΘCB3 instantiated with Kiasu-BC runs at about 0.75 c/B on Intel Haswell. Our work can also be seen as advances on the topic of secure key schedule design for AES-like ciphers, describing several proposals in this direction.
منابع مشابه
XHX - A Framework for Optimally Secure Tweakable Block Ciphers from Classical Block Ciphers and Universal Hashing
Tweakable block ciphers are important primitives for designing cryptographic schemes with high security. In the absence of a standardized tweakable block cipher, constructions built from classical block ciphers remain an interesting research topic in both theory and practice. Motivated by Mennink’s F̃ [2] publication from 2015, Wang et al. proposed 32 optimally secure constructions at ASIACRYPT’...
متن کاملSecurity Analysis of SKINNY under Related-Tweakey Settings (Long Paper)
In CRYPTO’16, a new family of tweakable lightweight block ciphers SKINNY was introduced. Denoting the variants of SKINNY as SKINNY-n-t, where n represents the block size and t represents the tweakey length, the design specifies t ∈ {n, 2n, 3n}. In this work, we evaluate the security of SKINNY against differential cryptanalysis in the related-tweakey model. First, we investigate truncated relate...
متن کاملSecurity Analysis of SKINNY under Related-Tweakey Settings
In CRYPTO’16, a new family of tweakable lightweight block ciphers SKINNY was introduced. Denoting the variants of SKINNY as SKINNY-n-t, where n represents the block size and t represents the tweakey length, the design specifies t ∈ {n, 2n, 3n}. In this work, we evaluate the security of SKINNY against differential cryptanalysis in the related-tweakey model. First, we investigate truncated relate...
متن کاملA Security Analysis of Deoxys and its Internal Tweakable Block Ciphers
In this article, we provide the first independent security analysis of Deoxys, a third-round authenticated encryption candidate of the CAESAR competition, and its internal tweakable block ciphers Deoxys-BC-256 and Deoxys-BC-384. We show that the related-tweakey differential bounds provided by the designers can be greatly improved thanks to a Mixed Integer Linear Programming (MILP) based search ...
متن کاملLikelihood Estimation for Block Cipher Keys
In this paper we give a general framework for the analysis of block ciphers using the statistical technique of likelihood estimation We show how various recent successful cryptanalyses of block ciphers can be regarded in this framework By analysing the SAFER block cipher in this framework we expose a cryptographic weakness of that cipher
متن کامل